提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)

  (2) 得x'=0 y'=0(比课本中的解法简单)而在解③时,却要用公式(1)分别用x=+2,y=y'-1代入原方程得出新方程x'/9+y'/4=1 (引导学生正确作出图) 

  小结: 从例中可以看出,要把方程(x-2)2/9+ (y+1)2/4 

  化为简单的方程x'2/9+y'2/4 =1 ,可把 x-2=x' y+1=y',得出应 

  把坐标原点平移到(2,-1),由此可推广,形如(x-h)2/a2+(y-k)2/b2的方程如何化简。 

  选择题1.坐标轴平移后,下列各数值中发生变化的是( ) 

  (A)某两点的距离 (B)某线权中点的坐标 

  (C)某两条直线的夹角 (D)某三角形的面积 

  答案选(C) 从此题可看出,坐标轴平移后,与坐标有关的量发生变化,但图形本身的几何性质不变。 

  选择题2:曲线x2+y2+2x-4y+1=0在新坐标系中的方程是x'2+y'2=4,则新坐标系原点在旧坐标系中的坐标是( ) 

  (A) (-1,2) (B) (1,-2) (C)2,-1) (D) (-2,1) 

  分析:把x2+y2+2x-4y+1=0配方为(x+1)2+(y-2)2=4 

  由x+1=x'===h=-1 y-2=y'===k=2 故应选(A)    

  (四)教师小结:今天讲的主要内容是坐标轴平移的意义,平移公式及其简单应用。移轴的目的在几何上是使曲线图形的中心(或顶点)与原点重合,使图形" 居中",而在代数上则是将一般二元二次方程通过代数变形(变量代换),消去其中的一次项,从而使方程简化,这个问题,下一节课将作更具体深入的研究与探 讨。 

  平移公式的两种形式何时应用较好方便,一般说来,由点的旧坐标求其新坐标时用(2)较方便,而由曲线的原方程求其新方程时用(1)较方便,但这也不是固定不变的,如例2中把方程x=2化为新方程,直接代入(2),马上就可求出x'=0这个新方程。 

  平移坐标轴,可以简化曲线的方程,但不含改变曲线原来的性质与不变,可以看出其中的辩证关系和内在规律。 

  (五)布置作业(略)    

  三、课后附记 

  1、本节课曾在福州市教育学院组织的青年教师培训班的观摩课上讲授,反映较好,从学生的作业反馈及下节课的复习提问,利用坐标轴的平移化简二元二次方 程中,引用平移公式进行运算,学生都能较熟练掌握,在半期考中,关于平移公式的应用题得分率在90%以上,说明本节课的效果较好,但因本教材在整个圆锥曲 线教材内容中占的分量不重,公式较少使用,容易出现反生与遗忘,因此在平时教学中可适时加以引用。

  2、本节课的设计遵照"一体三重五环节"的福八中数学教学的特色,重视发挥学生的主体与教师的主导作用,重视"过程"的教学,尽量做到:提出问题,循 循诱导;疏通思路,耐心开导;解题练习,精心指导;存在不足,热情辅导;掌握过程,尽心引导;真正体现重情善导的教风与特色。

提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)