提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)
三、说学法
在解决问题时,要抓住概念和性质。学生在遇到识别型的问题时,要能够回归到定义,看看图形是否具备定义所指的特征,如,判断等边三角形是否为中心对称 图形,那就按定义将它旋转180°,看它是否和本身重合,如果重合,说明它符合定义所述的特征,它就是中心对称图形,否则则不是。很多学生在学的过程中, 忽视数学概念运用。还有一点就是运用型的问题,遇到运用型的问题不妨多考虑性质,如作一点关于某点的对称点,要想到中心对称的性质:对称点连线经过对称中 心。说明要作的这个点在已知点和对称点的连线上,从而想到,连结已知点和对称点并延长,由性质告诉我们,对称点的连线被对称中心平分,所以延长时应该延长 一倍距离。运用性质还可解决已知两对称点,求作对称中心的问题。
四、说过程
整个流程是操作à概念à问题à性质à问题à练习à总结
(一)导入阶段
直接让学生做书上面的操作,将学生的注意力引到“旋转”上来,从而很自然的引出两图形关于某点成中心对称的概念。能够从“做”的过程中引出感念,学生对概念的接受会更容易一些,也更深刻一些。如果直接让学生从图中观察,学生可能不会想到旋转上去。
(二)讲授阶段
1、指导观察,掌握新知。
概念引出后,为了让学生体会概念所述的内容,用多媒体展示一些成中心对称的图形,再加深印象。然后让他们说出一些点的对称点及对称中心。接下来让学生观察两个对称点和对称中心的关系(数量关系和位置特征),从而引出中心对称的性质。
2、巩固练习,加深认识。
设置一些基本问题,如作一点关于某点的对称点,已知对称点求作对称中心等基本问题。接下来再设置一些练习,让学生独立完成。
设置一些开放型练习,让学生自己设计中心对称图案。并互相交流。
设置一个游戏——圆形棋盘上放棋子,一个利用中心对称的策略游戏,旨在提高学生的学习兴趣,提高学生的学习热情。
(三)终结阶段
1、学生总结,教师评价。
2、布置课后作业。
五、板书设计
对于大部分内容均在多媒体上显示,有些操作题,有必要在黑板上演示。
提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)